An Open Agent Architecture*

Philip R. Cohen
Adam Cheyer
SRI International

(pcohen@ai.sri.com)

Michelle Wang
Stanford University

Soon Cheol Baeg

ABSTRACT

The goal of this ongoing project is to develop an
open agent architecture and accompanying user in-
terface for networked desktop and handheld ma-
chines. The system we are building should support
distributed execution of a user’s requests, interop-
erability of multiple application subsystems, addi-
tion of new agents, and incorporation of existing
applications. It should also be transparent; users
should not need to know where their requests are
being executed, nor how. Finally, in order to fa-
cilitate the user’s delegating tasks to agents, the
architecture will be served by a multimodal inter-
face, including pen, voice, and direct manipulation.
Design considerations taken to support this func-
tionality will be discussed below.

INTRODUCTION

Agents are all the rage. “Visioneering” videos, such as
Apple Computer’s Knowledge Navigator, have helped
to popularize the notion that programs endowed with
agency, if not intelligence, are just around the corner.
Soon, users need not themselves wade into the vast
swamp of data in search of information, but rather the
desired, or better yet, needed information will be pre-
sented to the user by an intelligent agent in the most
comprehensible form, at just the right time.

Although such rosy scenarios are easy to come by,
intelligent agents are considerably more difficult to ob-
tain. Still, substantial progress is being made on a va-
riety of aspects of the agent story. At least three gen-
eral conceptions of agent-based software systems can be
found in current thinking:

1. Agents are programs sent out over the network to be
executed on a remote machine.

2. Agents are programs on a given machine that offer
services to others.

*This paper was supported by a contract from the Elec-
tronics and Telecommunications Research Institute (Korea).
Our thanks are also extended to AT&T for use of their text-
to-speech system.

ETRI

3. Agents are programs that assist the user in perform-
ing a task.

Each of these models can be found to some extent in
present-day software products, for example, in (1) Gen-
eral Magic’s emerging TELESCRIPT interpreter, (2) Mi-
crosoft’s OLE 2.0 and (3) Apple Computer’s Newton
and Hewlett Packard’s New Wave desktop, respectively.
Given this space of conceptualizations, we need to be
specific about ours.

Definitions and Objectives

Listed below are characteristics of what we are terming
agents followed by an example of those characteristics
as found in our system:

e Delegation — e.g., the ability to receive a task to be
performed without the user’s having to state all the
details

e Data-directed Frecution — e.g., the ability to moni-
tor local or remote events, such as database updates,
OS, or network activities, determining for itself the
appropriate time to execute.

e Communication — e.g., the ability to enlist other
agents (including people) in order to accomplish a
task.

e Reasoning — e.g., the ability to prove whether its
invocation condition is true, and to determine what
are its arguments.

e Planning — e.g., the ability to determine which agent
capabilities can be combined in order to achieve a
goal.

Our initial prototype includes agents that exhibit as-
pects of all the above capabilities, except planning (but
see [7]). Our goal is to develop an open agent archi-
tecture for networked desktop and handheld machines.
The system we are building should support distributed
execution of a user’s requests, interoperability of mul-
tiple application subsystems, addition of new agents,
and incorporation of existing applications. Finally, it
should be transparent; users should not need to know
where their requests are being executed, nor how.

www.manaraa.com



AGENT ARCHITECTURE

Based loosely on Schwartz’s FLIPSiDE system [17], the
Open Agent Architecture is a blackboard-based frame-
work allowing individual software “client” agents to
communicate by means of goals posted on a blackboard
controlled by a “Server” process.

The Server is responsible both for storing data that
is global to the agents, for identifying agents that can
achieve various goals, and for scheduling and main-
taining the flow of communication during distributed
computation. All communication between client agents
must pass through the blackboard. An extension of
Prolog has been chosen as the interagent communica-
tion language (ICL) to take advantage of unification
and backtracking when posting queries. The primary
job of the Server is to decompose ICL expressions and
route them to agents who have indicated a capability
in resolving them. Thus, agents can communicate in
an undirected fashion, with the blackboard acting as
a broker. Communication can also take place also in
a directed mode if the originating agent specifies the
identity of a target agent.

An agent consists of a Prolog meta-layer above a
knowledge layer written in Prolog, C or Lisp. The
knowledge layer, in turn, may lie on top of existing stan-
dalone applications (e.g. mailers, calendar programs,
databases). The knowledge layer can access the func-
tionality of the underlying application through the ma-
nipulation of files (e.g., mail spool, calendar datafiles),
through calls to an application’s API interface (e.g.
MAPI in Microsoft Windows), through a scripting lan-
guage, or through interpretation of an operating sys-
tem’s message events (Apple Events or Microsoft Win-
dows Messages).

Individual agents can respond to requests for infor-
mation, perform actions for the user or for another
agent, and can install triggers to monitor whether a
condition is satisfied. Triggers may make reference to
blackboard messages (e.g. when a remote computation
is completed), blackboard data, or agent-specific test
conditions (e.g. “when mail arrives...”).

The creation of new agents is facilitated by a client
library furnishing common functionality to all agents.
This library provides methods for defining an agent’s
capabilities (used by the blackboard to determine when
this agent should participate in the solving of a sub-
goal), natural language vocabulary (used by the inter-
face agent), and polling status. It also provides func-
tionality allowing an agent to read and write informa-
tion to the blackboard, to receive requests for informa-
tion or action, and to post such requests to the black-
board, a specific agent, or an entire population of ap-
propriate agents.

When attempting to solve a goal, an agent may find
itself lacking certain necessary information. The agent
can either post a request of a specific agent for the infor-
mation, or it may post a general request on the black-

board. In the latter case, all agents who can contribute
to the search will send solutions to the blackboard for
routing to the originator of the request. The agent ini-
tiating the search may choose either to wait until all
answers return before continuing processing, or may set
a trigger indicating that when the remote computation
is finished, a notification should interrupt local work in
progress. An agent also has access to primitives per-
mitting distributed AND and OR-parallel solving of a
list of goals.

Distributed Blackboard Architecture

As discussed above, the Open Agent Architecture con-
tains one blackboard “server” process, and many client
agents; client agents are permitted to execute on differ-
ent host machines. We are investigating an architecture
in which a server may itself be a client in a hierarchy
of servers; if none of its client agents can solve a par-
ticular goal, this goal may be passed further along in
the hierarchy. Following Gelerntner’s LINDA model [§],
blackboard systems themselves can be structured in a
hierarchy, which could be distributed over a network
(see Figure 1).1

When a goal (G) is requested to be posted on a local
blackboard (BB1), and the blackboard server agent at
BB1 determines that none of its child agents has the
requisite capabilities to achieve the goal, it propagates
the goal to a more senior blackboard server agent (BB4)
in the hierarchy. BB4 maintains a knowledge base of
the predicates that its lower level blackboards can eval-
uate. When a senior server receives such a request, it in
turn will propagate the request down to its subsidiary
servers. These subsidiary servers either have immediate
client agents who can evaluate the goal, or can them-
selves pass on the goal to another subsidiary server. In
the case illustrated in Figure 1, BB4 determines that
none of its subsidiary blackboards can handle the goal,
and thus sends the goal to its superior agent (BB5).
BB5 passes the goal to BB6, who in turn passes it to
BB9. When such a referred goal is passed through the
hierarchy of blackboards, it 1s accompanied by informa-
tion about the originating blackboard (indicated by the
BB1 subscript on G), including information identifying
its input port, host machine, etc. This continuation
information will enable a return communication (with
answers or failure) to be routed to the originating black-
board. Also, the identity of the responding knowledge
source BBY can be sent back to the originator, so that
future queries of the same type from BB1 may be ad-
dressed directly to BB9 without passing through the
hierarchy of blackboards.

Operational Agents

A variety of agents have been integrated into the Open
Agent Architecture:

!This is referred to as a “federation architecture” in [9].

www.manaraa.com



GEB1? BES
NGBE*N

GEB1? ﬂ EB4

EE1 EE: EE3

EEG
N GBEBI1Y

b

EEY EES EEY

Figure 1: Hierarchy of Blackboard Servers

a User-interface agent that accepts spoken or typed
(and soon, handwritten) natural language queries
from the user and presents responses to the queries.

e a Database agent, written in C, that interacts with a
remote X.500 Directory System Agent database con-
taining directory information.

e a Calendar agent, which can report upon where a
person might be, or when they might be perform-
ing a particular action. This information is retrieved
from data created by Sun Microsystem’s CalenTool
application.

e a Mail agent that can monitor incoming electronic
messages, and forward or file them appropriately.
The mail agent works with any Unix-compatible mail
application (e.g. Sun’s MailTool).

e a News agent that scans Internet newsgroups search-
ing for specified topics or articles.

e a Telephone agent, that can dial a telephone using
a ComputerPhone controller, and can communicate
with users in English, using NewTTS, AT&T’s text-
to-speech system.

Communication Language

The key to a functioning agent architecture is the in-
teragent communication language. We explain ours in
terms of its form and content. Regarding the former,
three speech act types are currently supported: Solve
(i.e., a question), Do (a request) and Post (an asser-
tion to the blackboard). For the time being, we have

adopted little of the sophisticated semantics known to
underlie such speech acts [5, 18, 19]. However, in at-
tempting to protect an agent’s internal state from being
overwritten by uninvited information, we do not allow
one agent to change another’s internal state directly —
only an agent that chooses to accept a speech act can do
so. For example, a fact posted to the blackboard does
not necessarily get placed in the database agent’s files
unless it so chooses, by placing a trigger on the black-
board asking to be notified of certain changes in certain
predicates (analogous to Apple Computer’s Publish and
Subscribe protocol).

Although our interagent communication language is
still evolving, we have adopted Horn clauses as the ba-
sic predicates that serve as arguments to the speech act
types. However, for reasons discussed below, we have
augmented the language beyond ordinary Prolog to in-
clude temporal information.

Because delegated tasks and rules will be executed
at distant times and places, users may not be able sim-
ply to use direct manipulation techniques to select the
items of interest, as those items may not yet exist, or
their identities may be unknown. Rather, users will
need to be able to describe arguments and invocation
conditions, preferably in a natural language. Because
these expressions will characterize events and their rela-
tionships, we expect natural language tense and aspect
to be heavily employed [6]. Consequently, the mean-
ing representation (or “logical form”) produced by the
multimodal interface will need to incorporate temporal

www.manaraa.com



information, which we do by extending a Horn clause
representation with time-indexed predicates and tem-
poral constraints. The blackboard server will need to
decompose these expressions, distribute pieces to the
various relevant agents, and engage in temporal rea-
soning to determine if the appropriate constraints are
satisfied.

With regard to the content of the language, we need
to specify the language of predicates that will be shared
among the agents. For example, if one agent needs to
know the location of the user, it will post an expression,
such as solve(location(user,U)), that another agent
knows how to evaluate. Here, agreement among agents
would be needed that the predicate name is location,
and its arguments are a person and a location. The
language of nonlogical predicates need not be fixed in
advance, it need only be common. Achieving such com-
monality across developers and applications is among
the goals of the ARPA “Knowledge Sharing Initiative,”
[13] and a similar effort is underway by the “Object
Management Group” (OMG) CORBA initiative to de-
termine a common set of objects.

A difficult question is how the user interface can know
about the English vocabulary of the various agents.
When agents enter the system, they not only register
their functional capabilities with the blackboard, they
also post their natural language vocabulary to the the
blackboard, where it can be read by the user interface.
Although conceptually reasonable for local servers (and
somewhat problematic for remote servers) the merg-
ing of vocabulary and knowledge is a difficult problem.
In the last section, we comment on how we anticipate
building agents to enforce communication and knowl-
edge representation standards.

Example Scenario

The following is an example of an operational demon-
stration scenario that illustrates inter-agent communi-
cation (see Figure 2).

The user tells the interface agent (in spoken lan-
guage) that “When mail arrives for me about a security
break, get it to me”. The interface agent translates this
statement into a logical expression, and posts the ex-
pression to the blackboard. The blackboard server de-
termines that a trigger should be installed on the mail
agent, causing it to poll the user’s mail database. Once
the mail agent has determined that a message matching
the requested topic has arrived for the user, it posts a
query to find out the user’s current location. The calen-
dar agent responds, noting that the user is supposed to
be in a meeting which is being held in a particular room,;
the database agent is then queried for the phone number
of the room. Finally, the telephone agent is instructed
to call the number, ask for the user (using voice synthe-
sis), perform an identification verification by requesting
a touchtone password, and then read the message to the
user. We intend to add agents that would increase the

number of ways in which a user might be contacted:
agents to control fax machines, automatic pagers, and
a notify agent that uses planning to determine which
communication method is most appropriate in a given
situation.

Comparison with Other Agent
Architectures

The most similar agent architectures are FLiPSiDE
[17] and that of Genesereth and Singh [9]. Like FLiP-
SiDE (Framework for Logic Programming Systems with
Distributed Execution), our Open Agent Architecture
uses Prolog as the interagent communication language,
and introduces a uniform meta-layer between the black-
board Server and the individual agents. Some aspects
of FLaiPSiDE’s blackboard architecture are more com-
plex than in our system. It uses a multi-level locking
scheme to try to reduce deadlock and minimize conflicts
in blackboard access during moments of high concur-
rency. The system also uses separate knowledge sources
for controlling triggers, ranking priorities and schedul-
ing the executing of knowledge sources, whereas we in-
corporate these sorts of actions directly into the black-
board server. Some features important to our system
that are not addressed by FLiPSiDE are the ability to
handle temporal contraints over variables, and the pos-
sibility for an agent to explicitly request AND and OR-
parallel solvingof a list of distributed goals.

Genesereth and Singh’s architecture is more ambi-
tious than ours in its employing a full first-order logic
as the interagent communication language. As yet,
we have not needed to expand our language beyond
Horn clauses with temporal constraints, but this step
may well be necessary. Genesereth and Singh use KIF
(Knowledge Interchange Format) [13] as their basic lan-
guage of predicates and as a knowledge integration
strategy. Because of our user interface considerations,
which in turn are heavily influenced by the form-factor
constraints of future handheld devices, we will need to
be able to merge contributions by different agents of
their natural language vocabulary, related pronuncia-
tions, and semantic mappings of those vocabulary items
to underlying predicates.

MAIL MANAGEMENT

In our earlier scenario, the mail agent was rather lim-
ited. To test our user interface and agent architecture
more fully, we are creating a more substantive mail
management agent, MAILTALK.

It has become common to develop mail managers that
manipulate messages as they arrive according to a set
of user-specified rules. The virtue of such systems 1s
that users can make mail management decisions once,
rather than consider each message in turn. However, a
number of problems exist for such systems, as well as
for all agent systems that we know of, especially when
considered as tools for the general population.

www.manaraa.com



When mail armves for me C alendar
about security, Application CE PHOME
get 1t to me.
1 T T 1
1 1 -
Interface Calendar [Damhase J Telephone
Agent 5 Agent ) Agent ! Agent |
Logical forrm Roorn 17 x1234
Blackbhoaxd !
add e Fhuore ruirn Call usex [ataxl234,
Trigger is usex? of roorn 177 serifir identity, | read roessage
Mail Mail Agent
Application :
l‘:ll ' EE EEEEEEN ]
SeE Mal
Hpool '
o,

Figure 2: Example of agent interaction

e End users cannot easily specify the rules. In a num-

ber of current systems, a scripting language needs to
be employed [1, 20], and in one system, users were
required to write rules in a temporal query language
[10]. We believe such methods for rule creation ef-
fectively eliminates the class of nontechnical users.
Other systems employ templates that the user fills
out [12]. Although this technique may work in many
cases, 1t limits the power of the rules that users can
create because they must search for an icon at which
to point in order to specify the contents of a slot.
Otherwise, they need to know or select the special
syntax or concept name required. However, the selec-
tion of items from long menus is infeasible for hand-
held devices with little screen territory.

End users cannot determine in advance how the col-
lection of rules will behave once a new rule is added.
This lack of predictability and the lack of debugging
tools will undermine the utility of agent-based sys-
tems, especially in a networked environment.

End users cannot easily determine what happened.
Generally, little or no history of the database of
events and rule firings is kept, and few tools are pro-
vided for reviewing that history.?

The mail manager is a special purpose system, inter-
acting loosely, if at all, with other components. With-
out tighter integration, the architecture and user in-

2An exception to this is the use of “Mission Status Re-

ports” in the Envoy agent framework [15].

terface for dealing with mail rules may diverge from
what is offered for other agents.

Our prototype MAILTALK was built to address these
concerns.

Rule specification. Based on technology developed

for the SHOPTALK factory simulation system [2, 3, 4],
MAILTALK permits users to specify rules by describ-
ing complex invocation conditions, and arguments
with a multimodal interface featuring typed and spo-
ken natural language, combined with direct manip-
ulation. For example, the user can delegate to the
mail agent as follows: “When Jones replies to my
message about ‘acl tutorials’, send his reply to the
members of my group.” Here, Jones’s reply cannot
be selected or pointed at since it does not yet ex-
ist. The English parser produces expressions in the
temporal logic, which are evaluated against various
databases (e.g., the mail database, or a simulation
database).

Predicting behavior. By giving end users the power

to write their own rules means we have given them
the freedom to make their own mistakes. Before let-
ting a potentially erroneous collection of agents loose
on one’s mail (or, more generally, the network), we
encourage users to simulate the behavior of those
agents. Included with MAILTALK is a knowledge-
based simulation environment that allows users to
create hypothetical worlds, and permits them to send
test messages or re-examine old mail files. In re-

www.manaraa.com



When: A message from someone
in the AIC has been read
ARCHIVE
Which message(s): it
In which file: <AIC-Mail>

Figure 3: Creating a mail rule

sponse, the system fires the relevant rules, and up-
dates a simulation database with the events that have
happened. This database can extend the actual mail
file, permitting expressions that depend on the entire
database to be evaluated (e.g., “when more than 5
messages from cohen are in < point to icon for mail
file>, move them to <icon for ‘unimportant mail’>).

Reviewing History. In order to determine if the re-
sulting behavior was in fact desired, users can ask
questions about the results of the simulation, can
view the simulation graphically, and can rewind the
history to interesting times (e.g., when a message was
read, or when a message was forwarded to a member
of a given mail group). When satisfied with the re-
sulting behavior of the collection of rules, users can
install them in the real world to monitor the real mail
file. Moreover, users can ask questions about the real
mail database, such as “Who has replied to my mes-
sage of November 26 about budgets?”

Example

The following is an example of the kind of processing
found in MaAILTALK. First, the user determines that
she wants to test out a mail management rule before
installing it. She creates a new “hypothetical world,”
and proceeds to create a rule by selecting the Archive
action from a menu. This results in a template’s being
presented, which she fills out as shown in Figure 3.

The user enters an English expression as the invoca-
tion condition, points at the icon for a file (AIC-Mail),
and deposits it into the destination field.®> This rule
definition is parsed into a Prolog representation, aug-
mented with temporal information and constraints.

The user then proceeds to digest an old mail file,
which simulates the sending of the old messages, updat-
ing the simulated mail database. The animated simu-
lation indicates that the rule has been fired, but just to
be certain that the appropriate messages were put into
the desired file, the user asks “When did I read a mes-
sage from someone in the AIC?”, followed by “Where
are those messages now?” When satisfied, she transfers
this rule to the real world, and requests that incoming
mail be monitored.

?For a discussion of the usability advantages of such tem-
plates over simply entering the above in one sentence, please
see [3, 14].

It should be noted that the reading of a message cre-
ates an event that triggers a rule. In general, that verb
(i.e., ‘read’) could be one that results from an agent’s
action (e.g., forwarding), and thus a cascade of rule
activations would ensue. It is to ensure that users un-
derstand such complexities that we offer the simulation
facility.

Comparison with Other Mail Managers

Numerous mail managers exist, and space precludes a
comprehensive survey. Only the more comparable ones
will be discussed below.

The mail management system most similar to our
is IscrREEN [16]. Tt allows a keyword and forms-based
creation of rules, and offers a simple simulation ca-
pability in which a user can pose test messages. In
response, the system applies its rules and explains in
English what it would have done. Because mail is fil-
tered using a boolean combination of keywords in var-
ious fields, ISCREEN can detect that various rules will
conflict, and can ask the user for a prioritization. The
user can employ organizational expressions (e.g., “man-
ager”), which the system resolves based on a Prolog-
based Corporate Directory database. QOur use of the
X.500 Directory System Agent offers the same capabil-
ity based on an emerging international standard.

The TAPESTRY mail system [10] incorporates a mail
database (as opposed to just a mail file), that is queried
by a temporal query language. MAILTALK share this ba-
sic underlying model, but rather than have users write
temporal queries, the user interface creates the tempo-
ral logic expressions through English language descip-
tions, which are then evaluated over the mail database.

The INFORMATION LENS system [12] provides vari-
ous message types, which can enter into filtering rules
(e.g., when a message of type Weekly Sales Report
arrives, forward it to ...), or can become arguments
for other actions (e.g., opening a spreadsheet). This
approach takes the first step to integrating mail with
other agent-like behavior, but a more fuller integration
is possible once it is realized that rule-based mail man-
agement is analogous to database monitoring (as shown
in TAPESTRY), and that a more general agent architec-
ture can subsume mail management as a special case. It
is this latter approach that we are following by embed-
ding the mail manager as an agent in the architecture.

IMPLEMENTATION

An 1nitial implementation of each of the pieces de-
scribed above has been developed (in Prolog and C) on
a Unix platform, with the exception of the pen/voice
interface, which is being implemented now. Communi-
cation is based on TCP/IP. The blackboard architec-
ture has been ported to Windows/NT, and agents that
encapsulate Microsoft API’s will be developed. Also
planned is a port of the blackboard interpreter to the

www.manaraa.com



Macintosh. When completed, the architecture will sup-
port multiple hardware and software platforms in a dis-
tributed environment.

FUTURE PLANS

In addition to the integration activities discussed above,
a number of future research activities are needed. In or-
der that an agent be invocable, its capabilities need to
be mapped into terms understood by the ensemble of
agents, and also by users. Moreover, as discussed ear-
lier, the natural language vocabulary needed to invoke
an agent’s services, including lexical, syntactic, and se-
mantic properties, will also be posted on the blackboard
for use by the user interface. In general, however, this
advertising of vocabulary can lead to conflicts among
definitions. We intend to develop an API Description
Tool, with which the agent designer describes the ser-
vices provided by that agent. The tool will produce
mappings of expressions in ICL into those services, in-
cluding vocabulary and knowledge representations that
can be merged into a common whole. Techniques used
in developing natural language database porting tools
(e.g., TEAM [11]) will be investigated.

In order to generalize the simulation approach in
MAILTALK to encompass the entire collection of agents,
the API Description Tool also needs to supply informa-
tion sufficient to allow the agent architecture to simu-
late an agent’s behavior. It will need to characterize the
preconditions and effects of agent actions, thereby also
providing a basis for a server’s planning to incorporate
the agent into a complex action that satisfies a user’s
stated goal [7].

Finally, an interesting question is where to situate the
temporal reasoning subsystem. Currently, it is located
with the blackboard server, but it could also be dis-
tributed as part of the agent layer, enabling other agents
to accept complex expressions for evaluation and/or
routing. We intend to experiment with various archi-
tectures.

References
[1] S-K. Chang and L. Leung. A knowledge-based

message management system. ACM Transac-
tions on Office Information Systems, 5(3):213-236,
1987.

[2] P. R. Cohen. Integrated interfaces for decision sup-
port with simulation. In B. Nelson, W. D. Kelton,
and G. M. Clark, editors, Proceedings of the Win-
ter Simulation Conference, pages 1066-1072. Asso-
ciation for Computing Machinery, December 1991.
invited paper.

[3] P.R. Cohen. The role of natural language in a mul-
timodal interface. In The 2nd FRIENDZ21 Inter-
national Symposium on Next Generation Human
Interface Technologies, Tokyo, Japan, November

[11]

[12]

1991. Institute for Personalized Information Envi-
ronment. Also appears in Proceedings of UIST 92,
ACM Press, New York, 1992, 143-149.

P. R. Cohen, M. Dalrymple, D. B. Moran, F. C. N.
Pereira, J. W. Sullivan, R. A. Gargan, J. L.
Schlossberg, and S. W. Tyler. Synergistic use of di-
rect manipulation and natural language. In Human
Factors in Computing Systems: CHI’89 Confer-
ence Proceedings, pages 227-234, New York, New
York, April 1989. ACM, Addison Wesley Publish-
ing Co.

P. R. Cohen and H. J. Levesque. Rational interac-
tion as the basis for communication. In P. R. Co-
hen, J. Morgan, and M. E. Pollack, editors, Inten-
tions in Communication. MIT Press, Cambridge,
Massachusetts, 1990.

M. Dalrymple. The interpretation of tense and as-
pect in English. In Proceedings of the 26th Annual
Meeting of the Association for Computational Lin-
guistics, Buffalo, New York, June 1988.

O. Etzioni, N. Lesh, and R. Segal. Building soft-
bots for UNIX. Department of Computer Science
and Engineering, University of Washington, un-
published ms., November 1992.

D. Gelernter. Mirror Worlds. Oxford University
Press, New York, 1993.

M. Genesereth and N. P. Singh. A knowledge shar-
ing approach to software interoperation. Computer
Science Department, Stanford University, unpub-
lished ms., January 1994.

D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaboratorive filtering to weave an infor-
mation tapestry. Communications of the ACM,
35(12):61-70, December 1992.

B. J. Grosz, D. Appelt, P. Martin, and F. Pereira.
Team: An experiment in the design of trans-
portable natural language interfaces. Artificial In-

telligence, 32(2):173-244, 1987.

T. W. Malone, K. R. Grant, F. A. Turbak, S. A.
Brobst, and M. D. Cohen. Intelligent information-
sharing. Commaunications of the ACM, 30(5):390—
402, May 1987.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil,
T. Senator, and W. Swartout. Enabling technology
for knowledge sharing. AT Magazine, 12(3), 1991.

S. L. Oviatt, P. R. Cohen, and M. Wang. Reduc-
ing linguistic variability in speech and handwrit-
ing through selection of presentation format. In
K. Shirai, editor, Proceedings of the International
Conference on Spoken Dialogue: New Directions in
Human-Machine Communication, Tokyo, Japan,
November 1993.

www.manaraa.com



[15]

[18]

[19]

[20]

M. Palaniappan, N. Yankelovitch, G. Fitzmaurice,
A. Loomis, B. Haan, J. Coombs, and N. Mey-
rowitz. The Envoy framework: An open architec-
ture for agents. ACM Transactions on Information

Systems, 10(3):233-264, July 1992.

S. Pollock. A rule-based message filtering system.
ACM Transactions on Office Information Systems,
6(3):232-254, July 1988.

D. G. Schwartz. Cooperating heterogeneous sys-
tems: A blackboard-based meta approach. Techni-
cal Report 93-112, Center for Automation and In-
telligent Systems Research, Case Western Reserve
University, Cleveland, Ohio, April 1993. Unpub-
lished Ph.D. thesis.

J. R. Searle. Speech acts: An essay in the phi-
losophy of language. Cambridge University Press,
Cambridge, 1969.

Y. Shoham. Agent-oriented programming. Artifi-
cial Intelligence, 60(1):51-92, 1993.

R. Turlock. SIFT: A Simple Information Filtering
Tool. Bellcore, Mountain, New Jersey, 1993.

www.manharaa.com



